Ir al contenido

Extracción líquido-líquido

De Wikipedia, la enciclopedia libre
(Redirigido desde «Extracción líquido líquido»)
Embudo de separación con los dos disolventes inmiscibles y el soluto parcialmente extraído

La extracción líquido-líquido, en un procedimiento o técnica de laboratorio, utilizada en química, que emplea dos disolventes inmiscibles o parcialmente miscibles (por ejemplo, agua y cloroformo, o éter etílico), para la separación de sustancias que presentan diferentes solubilidades en los disolventes implicados. Las fuerzas y mecanismos puestos en juego son de tipo físico, basándose la separación en procesos de distribución de los solutos entre los dos disolventes, en función de su solubilidad. La extracción líquido-líquido puede realizarse mediante técnicas simple, repetitiva y múltiple. En este último caso la técnica recibe el nombre de extracción en contracorriente.[1]

Este proceso también se le conoce como extracción líquida o extracción con disolvente; sin embargo, estos términos puede prestarse a confusión, porque también se aplican a la lixiviación de una sustancia soluble contenida en un sólido.

Principios[editar]

La distribución de un soluto entre dos líquidos inmiscibles es un proceso de trasferencia de materia desde una de las fases líquida a la otra. La cantidad de materia que se transfiere desde un líquido a otro está en relación con la solubilidad de la sustancia en cuestión, en cada uno de los disolventes, de forma que el soluto se distribuye entre las dos fases hasta alcanzar un equilibrio químico, regido por la ley de distribución propuesta inicialmente por Berthelot y desarrollada por W. Nerst. Esta ley establece que en el equilibrio, la relación entre las concentraciones del soluto en cada disolvente inmiscible, es constante. Llamando A(aq) al soluto disuelto en la fase acuosa y A(org) al que se encuentra en la fase orgánica,

Puesto que la relación de las concentraciones de dicha sustancia en cada uno de los disolventes, a una temperatura determinada, es constante.

Esta constante se denomina constante de distribución[2]​ o, también, coeficiente de reparto ( a veces, también, constante o coeficiente de partición) y suele representarse como KD.[3]​Estas constantes de distribución son muy útiles en el análisis químico preparativo, pues permiten predecir si es posible o no la separación de sustancias en función de sus diferentes solubilidades en cada disolvente y de esta manera, eliminar interferencias de otras sustancias que puedan afectar al resultado del análisis.

Relación de distribución[editar]

La definición dada anteriormente de la constante de distribución KD, es ideal y válida cuando el soluto se encuentra en la misma forma química en ambos disolvente. En la práctica, esto no siempre sucede así, pues en la fase acuosa el soluto puede estar, por ejemplo, disociado, mientras que en la fase orgánica, no (caso de ácidos orgánicos). En otras situaciones, el soluto en la fase acuosa puede estar formando algún tipo de complejo o cualquier otro tipo de reacción posible, que no se da en la fase orgánica o si se da, se produce de manera diferente. En consecuencia, es necesario definir un especie de constante condicional o aparente, denominada relación o coeficiente de distribución, a menudo expresada por la letra D, que relaciona la concentración total de las diferentes especias en las que se encuentra el soluto en la fase orgánica con la concentración total de todas las especias en que se encuentra dicho soluto en la fase acuosa.[1]​ Para el caso sencillo de una sustancia orgánica con propiedades básicas (por ejemplo, una amina), en el medio acuoso estará en equilibrio entre la base y su ácido conjugado:

Es decir, en la fase acuosa la sustancia B se encontrara en dos formas diferentes, B y BH+, mientras que en la fase orgánica, al tratarse de un disolvente, por lo general, poco o nada disociante, solo se encontrará la especia B. En consecuencia, se define una expresión similar a la de la constante de equilibrio, que tiene en cuenta esta situación:[4]

o lo que es lo mismo:

Factores de separación[editar]

El factor de separación es una razón de distribución dividida por otra, es una medida de la habilidad del sistema para separarse en dos solutos.

Por ejemplo si la distribución de la razón para el níquel (DNi) es 10 y la distribución de la razón para la distribución de la plata (DAg) es 100, entonces el factor de separación plata/níquel (SFAg/Ni) es igual a DAg/DNi = SFAg/Ni = 10.

Procedimiento[editar]

Una sustancia soluble en un disolvente, pero más soluble en un segundo disolvente no miscible con el anterior, puede extraerse del primero, añadiéndole el segundo, agitando la mezcla, y separando las dos fases. Con esta operación se busca concentrar un analito o bien separarlo de una matriz compleja o con interferentes.

A nivel de laboratorio el proceso se desarrolla en un embudo de decantación. Como es esperable, la extracción nunca es total, pero se obtiene más eficacia cuando la cantidad del segundo disolvente se divide en varias fracciones y se hacen sucesivas extracciones que cuando se añade todo de una vez y se hace una única extracción.

El procedimiento es el siguiente:

  • Se añade dentro del embudo la sustancia disuelta en el disolvente del cual se pretende extraer.
  • Se completa con el disolvente en el que se extraerá y en el que la solubilidad de la sustancia es mayor.
  • Se cierra la parte superior del embudo y se agita vigorosamente para formar una emulsión de los dos líquidos inmiscibles y permitir el reparto de la sustancia disuelta entre ambos.
  • Se abre de vez en cuando la válvula del embudo de manera que los gases que se puedan formar salgan del embudo.
  • Se deja reposar durante un tiempo para que se forme una interfaz clara entre ambos.
  • Se abre la espita inferior del embudo y se deja escurrir el líquido más denso en un recipiente adecuado, como un vaso de precipitado.

Con relativa frecuencia aparecen en el proceso de extracción emulsiones o interfaces que impiden una correcta separación en el embudo de decantación de las capas de disolventes, casi siempre acuosa y orgánica. Este problema se da, especialmente, cuando se trata de extracciones con cloruro de metileno. Para solventar este problema es conveniente añadir unos mililitros de salmuera y agitar de nuevo. En la mayor parte de los casos se produce la separación de las fases sin problemas.

La transferencia del componente disuelto (soluto) se puede mejorar por la adición de agentes saladores a la mezcla de alimentación o la adición de agentes "formadores de complejos" al disolvente de extracción. En algunos casos se puede utilizar una reacción química para mejorar la transferencia como por ejemplo, el empleo de una solución cáustica acuosa (como una solución de hidróxido de sodio), para extraer fenoles de una corriente de hidrocarburos.

Un concepto más complicado de la extracción líquido-líquido se utiliza en un proceso para separar completamente dos solutos. Un disolvente primario de extracción se utiliza para extraer uno de los solutos presentes en una mezcla (en forma similar al agotamiento en destilación) y un disolvente lavador se utiliza para depurar el extracto libre del segundo soluto (semejante a la rectificación en destilación).

Aplicación[editar]

El proceso tiene repercusión industrial y se emplea en extracción de aceites, grasas y pigmentos. Por ejemplo, el yodo, poco soluble en agua, se extrae de la misma con tetracloruro de carbono. Una vez efectuada la separación de las fases se trata de calcular la concentración del yodo en cada fase, valorándolo con tiosulfato.

Este proceso puede usarse también controlando la solubilidad de nuestras sustancias en distintos disolventes. Especialmente en química orgánica, mediante distintos tratamientos a algunos grupos funcionales podemos controlar el valor de K, haciéndolos así insolubles o solubles según nos interese, por ejemplo: si tenemos aminas disueltas en un disolvente orgánico y queremos pasarlas a una disolvente polar, podemos tratarlas con ácido para cargarlas y que se protonen, disolviéndose así en nuestro disolvente polar, una vez separado hacemos el proceso contrario (es decir basificarlas y devolverlas a su forma original) y las separamos totalmente de nuestros disolventes.

Referencias[editar]

  1. a b Valcárcel Cases, M.; Gómez Hens, A. (1988). «Cap. 7. Extracción líquido-líquido (I). Aspectos termodinámicos y cinéticos». Técnicas Analíticas de Separación. Barcelona: Reverté. p. 173. ISBN 84-291-7984-4. 
  2. Douglas A. Skoog, Donald M. West, F. James Holler and Stanley R. Crouch. (2015). «Cap. 31C Separaciones por extracción». Fundamentos de química analítica. Cengage Learning. ISBN 978-607-519-937-6. 
  3. Higson, Séamus (2003). «cap. 8.2 Solvent extraxction methods». Analytical chemistry (en inglés). Oxford University Press. ISBN 978-0-19-850289-0. OCLC ocm51109084. Consultado el 29 de junio de 2024. 
  4. Harris, Daniel C. (1992). «Cap. 22-1 Extracción con solvente». Análisis Químico Cuantitativo. Grupo Editorial Iberoamericana. ISBN 970-625-003-4. 

Enlaces externos[editar]