Diferencia entre revisiones de «Neutrón»

De Wikipedia, la enciclopedia libre
Contenido eliminado Contenido añadido
Rebekkaa (discusión · contribs.)
Sin resumen de edición
m Revertidos los cambios de Rebekkaa (disc.) a la última edición de SieBot
Línea 1: Línea 1:
''{{Ficha de partícula
{{Ficha de partícula
| nombre = Neutrón
| nombre = Neutrón
| imagen = Quark structure neutron.svg
| imagen = Quark structure neutron.svg
Línea 49: Línea 49:


== Historia ==
== Historia ==

Antes de que se descubriera el neutrón, se creía que un núcleo de número de masa A (es decir, de masa casi A veces la del protón) y carga Z veces la del protón, estaba formada por A protones y A-Z electrones. Pero existen varias razones por las que un núcleo no puede contener electrones. Un electrón solamente podría encerrarse en un espacio de las dimensiones de un núcleo atómico (10 cm elevado -12) si fuese atraído por el núcleo mediante una fuerza electromagnética muy intensa; sin embargo, un campo electromagnético tan fuerte no puede existir en el núcleo porque llevaría a la producción espontánea de pares de electrones negativos y positivos (positrones). Por otra parte, existe incompatibilidad entre los valores del espin de los núcleos encontrados experimentalmente y los que podrían deducirse de una teoría que los supusiera formados por electrones y protones; en cambio, los datos experimentales están en perfecto acuerdo con las previsiones teóricas deducidas de la hipótesis de que el núcleo consta sólo de neutrones y protones. El número de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino. En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.
[[Ernest Rutherford]] propuso por primera vez la existencia del neutrón en [[1920]], para tratar de explicar que los núcleos no se desintegrasen por la repulsión electromagnética de los protones.
[[Ernest Rutherford]] propuso por primera vez la existencia del neutrón en [[1920]], para tratar de explicar que los núcleos no se desintegrasen por la repulsión electromagnética de los protones.


Línea 57: Línea 55:
En [[1932]], en [[París]], [[Irène Joliot-Curie]] y [[Frédéric Joliot]] mostraron que esta radiación desconocida, al golpear [[parafina]] u otros compuestos que contenían [[hidrógeno]], producía protones a una alta energía. Eso no era inconsistente con la suposición de que eran rayos gammas de la radiación, pero un detallado análisis cuantitativo de los datos hizo difícil conciliar la ya mencionada hipótesis.
En [[1932]], en [[París]], [[Irène Joliot-Curie]] y [[Frédéric Joliot]] mostraron que esta radiación desconocida, al golpear [[parafina]] u otros compuestos que contenían [[hidrógeno]], producía protones a una alta energía. Eso no era inconsistente con la suposición de que eran rayos gammas de la radiación, pero un detallado análisis cuantitativo de los datos hizo difícil conciliar la ya mencionada hipótesis.


Finalmente (a finales de 1932) el físico inglés [[James Chadwick]], en [[Inglaterra]], realizó una serie de experimentos de los que obtuvo unos resultados que no concordaban con los que predecían las fórmulas físicas: la energía producida por la radiación era muy superior y en los choques no se conservaba el momento. Para explicar tales resultados, era necesario optar por una de las siguientes hipótesis: o bien se aceptaba la no conservación del momento en las colisiones o se afirmaba la naturaleza corpuscular de la radiación. Como la primera hipótesis contradecía las leyes de la física, se optó por la segunda. Con ésta, los resultados obtenidos quedaban explicados pero era necesario aceptar que las partículas que formaban la radiación no tenían carga eléctrica. Tales partículas tenían una masa muy semejante a la del protón, pero sin carga eléctrica, por lo que se pensó que eran el resultado de la unión de un protón y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron la idea del dipolo y se conoció la naturaleza de los neutrones.El Neutrón es una partícula eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.
Finalmente (a finales de 1932) el físico inglés [[James Chadwick]], en [[Inglaterra]], realizó una serie de experimentos de los que obtuvo unos resultados que no concordaban con los que predecían las fórmulas físicas: la energía producida por la radiación era muy superior y en los choques no se conservaba el momento. Para explicar tales resultados, era necesario optar por una de las siguientes hipótesis: o bien se aceptaba la no conservación del momento en las colisiones o se afirmaba la naturaleza corpuscular de la radiación. Como la primera hipótesis contradecía las leyes de la física, se optó por la segunda. Con ésta, los resultados obtenidos quedaban explicados pero era necesario aceptar que las partículas que formaban la radiación no tenían carga eléctrica. Tales partículas tenían una masa muy semejante a la del protón, pero sin carga eléctrica, por lo que se pensó que eran el resultado de la unión de un protón y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron la idea del dipolo y se conoció la naturaleza de los neutrones.


Antes del descubrimiento del neutron, se pensaba que un núcleo de número de masa A (es decir, de masa casi A veces la del protón) y carga Z veces la del protón, estaba formada por A protones y A-Z electrones. Pero existen varias razones por las que un núcleo no puede contener electrones. Un electrón solamente podría encerrarse en un espacio de las dimensiones de un núcleo atómico (10 cm elevado -12) si fuese atraído por el núcleo mediante una fuerza electromagnética muy intensa; sin embargo, un campo electromagnético tan fuerte no puede existir en el núcleo porque llevaría a la producción espontánea de pares de electrones negativos y positivos (positrones). Por otra parte, existe incompatibilidad entre los valores del espin de los núcleos encontrados experimentalmente y los que podrían deducirse de una teoría que los supusiera formados por electrones y protones; en cambio, los datos experimentales están en perfecto acuerdo con las previsiones teóricas deducidas de la hipótesis de que el núcleo consta sólo de neutrones y protones. la cantidad de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino. En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.


Los neutrones como todas las radiaciones, producen daños directos, provocando reacciones nucleares y químicas en los materiales alcanzados. Una particularidad de los neutrones es la de producir en los materiales irradiados sustancias radioactivas de vida media muy larga. De ahí que los daños más graves producidos por las explosiones nucleares sean los provocados por neutrones en cuanto que las sustancias transformadas en radiactivas por su acción pueden ser asimiladas por organismos vivientes; pasado cierto tiempo, estas sustancias se desintegran y provocan en el organismo trastornos directos y mutaciones genéticas





Los neutrones lentos procedentes de un reactor nuclear fuera de la figura entran por el canal 1 e inciden sobre el cristal situado en 2, de donde salen difractados. Los que tiene una determinada velocidad (neutrones monocromáticos) salen difractados con el ángulo necesario para alcanzar el colimador, 3. El haz de neutrones monocromáticos alcanza a continuación la muestra en estudio, 4 y se difractan de nuevo; los ángulos de difración y la velocidad de los neutrones emitidos dependen de las característica del material que se examina. El contador de neutrones, 5 mide la velocidad de los difractados para cada ángulo de difracción. Los dispositivos situados en 6 sirven para desplazar el material en estudio y los situados en 7 para desplazar el contador de neutrones. Unos blindajes de plomo, 8, para los rayos y de parafina con boro, 9 para los neutrones procedentes del exterior impiden detectar otras partículas




== Fisión nuclear ==
== Fisión nuclear ==
Línea 195: Línea 176:
[[zh:中子]]
[[zh:中子]]
[[zh-min-nan:Tiong-chú]]
[[zh-min-nan:Tiong-chú]]
[[zh-yue:中子]]'
[[zh-yue:中子]]

Revisión del 22:33 17 ago 2010

Neutrón

Estructura interna de un neutrón formada por 3 quarks.
Clasificación Barión
Composición 1 quark arriba, 2 quark abajo
Familia Fermión
Grupo Hadrón
Interacción Gravedad, Débil, Nuclear fuerte
Antipartícula Antineutrón
Teorizada Ernest Rutherford[1]​ (1920)
Descubierta James Chadwick[1]​ (1932)
Masa 1,674 927 29(28)×10−27 kg
939,565 560(81) MeV/c2
1,008 664 915 6(6) uma
Vida media 885,7(8) s
Carga eléctrica 0
Dipolo eléctrico <2,9×10−26 e cm
Polarizabilidad 1,16(15)×10−3 fm3
Momento magnético -1,9130427(5) μN
Polarizabilidad magnética 3,7(20)×10−4 fm3
Espín 1/2
Isospín -1/2
Paridad +1
Condensado I(JP) = 1/2(1/2+)

Un neutrón es un barión neutro formado por dos quarks abajo y un quark arriba. Es una particula sin carga eléctrica. Forma, junto con los protones, los núcleos atómicos. Fuera del núcleo atómico es inestable y tiene una vida media de unos 15 minutos (885.7 ± 0.8 s),[2]​ emitiendo un electrón y un antineutrino para convertirse en un protón. Su masa es muy similar a la del protón.

El neutrón es necesario para la estabilidad de casi todos los núcleos atómicos (la única excepción es el hidrógeno), ya que interactúa fuertemente atrayéndose con los protones, pero sin repulsión electrostática.

Historia

Ernest Rutherford propuso por primera vez la existencia del neutrón en 1920, para tratar de explicar que los núcleos no se desintegrasen por la repulsión electromagnética de los protones.

En el año 1909, en Alemania, Walther Bothe y H. Becker descubrieron que si las partículas alfa del polonio, dotadas de una gran energía, caían sobre materiales livianos, específicamente berilio, boro o litio, se producía una radiación particularmente penetrante. En un primer momento se pensó que eran rayos gamma, aunque éstos eran más penetrantes que todos los rayos gammas hasta ese entonces conocidos, y los detalles de los resultados experimentales eran difíciles de interpretar sobre estas bases.

En 1932, en París, Irène Joliot-Curie y Frédéric Joliot mostraron que esta radiación desconocida, al golpear parafina u otros compuestos que contenían hidrógeno, producía protones a una alta energía. Eso no era inconsistente con la suposición de que eran rayos gammas de la radiación, pero un detallado análisis cuantitativo de los datos hizo difícil conciliar la ya mencionada hipótesis.

Finalmente (a finales de 1932) el físico inglés James Chadwick, en Inglaterra, realizó una serie de experimentos de los que obtuvo unos resultados que no concordaban con los que predecían las fórmulas físicas: la energía producida por la radiación era muy superior y en los choques no se conservaba el momento. Para explicar tales resultados, era necesario optar por una de las siguientes hipótesis: o bien se aceptaba la no conservación del momento en las colisiones o se afirmaba la naturaleza corpuscular de la radiación. Como la primera hipótesis contradecía las leyes de la física, se optó por la segunda. Con ésta, los resultados obtenidos quedaban explicados pero era necesario aceptar que las partículas que formaban la radiación no tenían carga eléctrica. Tales partículas tenían una masa muy semejante a la del protón, pero sin carga eléctrica, por lo que se pensó que eran el resultado de la unión de un protón y un electrón formando una especie de dipolo eléctrico. Posteriores experimentos descartaron la idea del dipolo y se conoció la naturaleza de los neutrones.

Fisión nuclear

Los neutrones son fundamentales en las reacciones nucleares: una reacción en cadena se produce cuando un neutrón causa la fisión de un átomo fisible, produciéndose un mayor número de neutrones que causan a su vez otras fisiones. Según esta reacción se produzca de forma controlada o incontrolada se tiene lo siguiente:

Referencias

Véase también

Enlaces externos