Relleno con círculos de un triángulo equilátero
El relleno con círculos de un triángulo equilátero es un problema de empaquetado estudiado en matemáticas discretas. Consiste en acomodar n círculos de radio unidad en el triángulo equilátero más pequeño posible.
Soluciones
[editar]Se conocen las soluciones óptimas para n < 13 y para cualquier número triangular de círculos, y en los años 1990 se formularon conjeturas para n < 28.[1][2][3]
Una conjetura de Paul Erdős y Norman Oler indica que, si n es un número triangular, entonces los empaquetamientos óptimos de los n−1 y de los n círculos tienen la misma longitud lateral: es decir, según la conjetura, se puede encontrar un empaquetamiento óptimo para n−1 círculos eliminando cualquier círculo individual del empaquetamiento hexagonal óptimo para n círculos.[4] Esta conjetura ahora se sabe que es verdadera para n ≤ 15.[5]
Soluciones mínimas y su longitud del lado del triángulo asociado para círculos de radio uno:[1]
Un problema estrechamente relacionado es cubrir el triángulo equilátero con un número fijo de círculos iguales, teniendo un radio tan pequeño como sea posible.[6]
Véase también
[editar]- Relleno con círculos de un triángulo isósceles rectángulo
- Círculos de Malfatti, una construcción que brinda la solución óptima para tres círculos en un triángulo equilátero
Referencias
[editar]- ↑ a b Melissen, Hans (1993), «Densest packings of congruent circles in an equilateral triangle», American Mathematical Monthly 100 (10): 916-925, MR 1252928, doi:10.2307/2324212..
- ↑ Melissen, J. B. M.; Schuur, P. C. (1995), «Packing 16, 17 or 18 circles in an equilateral triangle», Discrete Mathematics 145 (1-3): 333-342, MR 1356610, doi:10.1016/0012-365X(95)90139-C..
- ↑ Graham, R. L.; Lubachevsky, B. D. (1995), «Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond», Electronic Journal of Combinatorics 2: Article 1, approx. 39 pp. (electronic), MR 1309122..
- ↑ Oler, Norman (1961), «A finite packing problem», Canadian Mathematical Bulletin 4: 153-155, MR 0133065, doi:10.4153/CMB-1961-018-7..
- ↑ Payan, Charles (1997), «Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler», Discrete Mathematics (en francés), 165/166: 555-565, MR 1439300, doi:10.1016/S0012-365X(96)00201-4..
- ↑ Nurmela, Kari J. (2000), «Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles», Experimental Mathematics 9 (2): 241-250, MR 1780209, doi:10.1080/10586458.2000.10504649..