Usuario:Wikigordo1998

De Wikipedia, la enciclopedia libre

TRANSMICION DE DATOS[editar]

Un medio de transmisión es el canal que permite la transmisión de información entre dos terminales de un sistema de transmisión. La transmisión se realiza habitualmente empleando ondas electromagnéticas que se propagan a través del canal. A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío.

Dependiendo de la forma de conducir la señal a través del medio, los medios de transmisión se pueden clasificar en dos grandes grupos: medios de transmisión guiados y medios de transmisión no guiados. Según el sentido de la transmisión podemos encontrarnos con tres tipos diferentes: simplex, half-duplex y full-duplex.

MEDIOS DE TRANSMISIÓN GUIADOS

Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro. Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace.

La velocidad de transmisión depende directamente de la distancia entre los terminales, y de si el medio se utiliza para realizar un enlace punto a punto o un enlace multipunto. Debido a esto los diferentes medios de transmisión tendrán diferentes velocidades de conexión que se adaptarán a utilizaciones dispares.

Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de ordenadores son:

v  El par trenzado

v  El cable coaxial

v  La fibra óptica.

El par trenzado y el cable coaxial usan conductores metálicos que transportan señales de corriente eléctrica. La fibra óptica es un cable de cristal o plástico que acepta y transporta señales en forma de luz.

El par trenzado

Consiste en un par de hilos de cobre conductores cruzados entre sí, con el objetivo de reducir el ruido de diafonía. A mayor número de cruces por unidad de longitud, mejor comportamiento ante el problema de diafonía. Existen dos tipos de par trenzado: sin blindaje y blindado.

Cable de par trenzado sin blindaje (UTP)

El cable de par trenzado sin blindaje (UTP, Unshieled Twisted Pair) es el tipo más frecuente de medio de comunicación. Está formado por dos conductores, habitualmente de cobre, cada uno con su aislamiento de plástico de color, el aislamiento tiene un color asignado para su identificación, tanto para identificar los hilos específicos de un cable como para indicar qué cables pertenecen a un par dentro de un manojo.

La EIA ha desarrollado estándares para graduar los cables UTP según su calidad

Conectores UTP. Los cables UTP se conectan habitualmente a los dispositivos de red a través de un tipo de conector y un tipo de enchufe. Uno de los estándares más utilizados es el RJ 45 de 8 conductores.

Cable de par trenzado blindado (STP)

El cable de par trenzado blindado (STP, Shieled Twister Pair) tiene una funda de metal o un recubrimiento de malla entrelazada que rodea cada par de conductores aislados. Esa carcasa de metal evita que penetre el ruido electromagnético y elimina un fenómeno denominado interferencia, que es el efecto indeseado de un canal sobre otro canal. El STP tiene las mismas consideraciones de calidad y usa los mismos conectores que el UTP, pero es necesario conectar el blindaje a tierra.

Las aplicaciones principales en las que se hace uso de cables de par trenzado son:

  Ø   Bucle de abonado: es el último tramo de cable existente entre el teléfono de un abonado y la central a la que se encuentra conectado. Este cable suele ser UTP Cat.3 y en la actualidad es uno de los medios más utilizados para transporte de banda ancha, debido a que es una infraestructura que esta implantada en el 100% de las ciudades.

  Ø   Redes LAN: en este caso se emplea UTP Cat.5 o Cat.6 para transmisión de datos, consiguiendo velocidades de varios centenares de Mbps. Un ejemplo de este uso lo constituyen las redes 10/100/1000BASE-T.

Cable coaxial.

El cable coaxial transporta señales con rango de frecuencias más altos que los cables de  pares trenzados. El cable coaxial tiene un núcleo conductor central formado por un hilo sólido o enfilado, habitualmente de cobre, recubierto por un aislante e material dieléctrico que, a su vez, está recubierto de una hoja exterior de metal conductor, malla o una combinación de ambos, también habitualmente de cobre. La cubierta metálica exterior sirve como blindaje contra el ruido y como un segundo conductor. Este conductor está recubierto por un escudo

aislante, y todo el cable por una cubierta de plástico.

Los cables coaxiales se conectan a los dispositivos utilizando conectores específicos. Unos pocos de los más empleados se han convertido en estándares, siendo el más frecuente el conector de barril o a bayoneta BNC.

Los cables coaxiales para redes de datos usan frecuentemente conectores en T y terminadores. El terminador es necesario en las topologías de bus donde hay un cable principal que actúa de troncal con ramas a varios dispositivos pero que en si misma no termina en un dispositivo, si el cable principal se deja sin terminar, cualquier señal que se transmita sobre él generará un eco que rebota hacia atrás e interfiere con la señal original. El terminador absorbe la onda al final del cable y elimina el eco de vuelta.

Fibra Óptica

La fibra óptica está hecha de plástico o cristal y transmite las señales en forma de luz.

La fibra óptica utiliza la reflexión para transmitir la luz a través del canal. Un núcleo de cristal o

plástico se rodea de una cobertura de cristal o plástico menos denso, la diferencia de

densidades debe ser tal que el rayo se mueve por el núcleo reflejado por la cubierta y no

refractado en ella.

Modos de propagación.

La propagación de la luz por el cable puede tomar dos modos: multimodo y monomodo, y la primera se puede implementar de dos maneras: índice escalonado o de índice de gradiente gradual.

Multimodo. El modo multimodo se denomina así porque hay múltiples rayos de luz de una fuente luminosa que se mueven a través del núcleo por caminos distintos. Cómo se mueven estos rayos dentro del cable depende de la estructura del núcleo.

En la fibra multimodo de índice escalonado, la densidad del núcleo permanece constante desde el centro hasta los bordes, el rayo de luz se mueve a través de esta densidad constante en línea recta hasta que alcanza la interfaz del núcleo y la cubierta, en esa interfaz hay un cambio abrupto a una densidad más baja que altera el ángulo de movimiento del rayo. El término escalonado se refiere a la rapidez de este cambio.

La señal consiste en un haz de rayos que recorren diversos caminos, reflejándose de formas diversas e incluso perdiéndose en la cubierta. En el destino los distintos rayos de luz se recombinan en el receptor, por lo que la señal queda distorsionada por la pérdida de luz. Esta distorsión limita la tasa de datos disponibles.

La fibra multimodo de índice gradual, decrementa la distorsión de la señal a través del cable, la densidad del núcleo es variable, mayor en el centro y decrece gradualmente hacia el borde. La señal se introduce en el centro del núcleo, a partir de este punto, sólo el rayo horizontal se mueve en línea recta a través de la zona central. Los rayos en otras direcciones se mueven a través de la diferencia de densidad, con el cambio de densidad, el rayo de luz se refracta formando una curva, los rayos se intersectan en intervalos regulares, por lo que el receptor puede reconstruir la señal con mayor precisión.

Monomodo. El monomodo usa fibra de índice escalonado y una fuente de luz muy enfocada que limita los ángulos a un rango muy pequeño. La fibra monomodo se fabrica con un diámetro mucho más pequeño que las fibras multimodo y con una densidad sustancialmente menor. La propagación de los distintos rayos es casi idéntica y los retrasos son casi despreciables, todos los rayos llegan al destino juntos, y se recombinan sin distorsión de la señal.

Tamaño de la fibra y composición del cable.

Las fibras ópticas se definen por la relación entre el diámetro de su núcleo y el diámetro de su cubierta, expresadas en micras.

Fuentes de luz para cables ópticos.

La señal por la fibra óptica es transportada por un rayo de luz, para que haya transmisión, el emisor debe contar con una fuente de luz, y el receptor con una célula fotosensible. El receptor más usual es un fotodiodo, dispositivo que transforma la luz recibida en corriente eléctrica, mientras que para la emisión se usa un diodo LED o un diodo láser, siendo el primero más barato pero que produce una luz desenfocada y con un rango de ángulos muy elevado.

Conectores para fibra óptica.

Los conectores para el cable de fibra óptica deben ser tan precisos como el cable en si mismo, cualquier desalineación da como resultado que la señal se refleje hacia el emisor, y cualquier diferencia en el tamaño produce un cambio en el ángulo de la señal. Además la conexión debe completarse aunque las fibras no estén completamente unidas, pues un intervalo entre dos núcleos da como resultado una señal disipada, y una conexión demasiado presionada comprime ambos núcleos y altera el ángulo de reflexión. Los fabricantes han desarrollado varios conectores precisos y fáciles de utilizar, con forma de barril y en versiones de macho y hembra, teniendo el cable un conector macho y el dispositivo el conector hembra.

Las ventajas de la fibra óptica son: Inmunidad al ruido, menor atenuación de la señal y ancho de banda mayor. Y las desventajas: el coste, la fragilidad y la instalación y el mantenimiento.

MEDIOS DE TRANSMISIÓN NO GUIADOS

Los medios no guiados o comunicación sin cable transportan ondas electromagnéticas sin usar un conductor físico, sino que se radian a través del aire, por lo que están disponibles para cualquiera que tenga un dispositivo capaz de aceptarlas.

En este tipo de medios tanto la transmisión como la recepción de información se lleva a cabo mediante antenas. A la hora de transmitir, la antena irradia energía electromagnética en el medio. Por el contrario, en la recepción la antena capta las ondas electromagnéticas del medio que la rodea.

La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional. En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas. En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones, pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional.

La transmisión de datos a través de medios no guiados añade problemas adicionales, provocados por la reflexión que sufre la señal en los distintos obstáculos existentes en el medio. Resultando más importante el espectro de frecuencias de la señal transmitida que el propio medio de transmisión en sí mismo.

Según el rango de frecuencias de trabajo, las transmisiones no guiadas se pueden clasificar en tres tipos: radio, microondas y luz (infrarrojos/láser).

Conceptos relacionados con las transmisiones de

Radio.

Propagación. Las ondas de radio utilizan cinco tipo de propagación: superficie, troposférica, ionosférica, línea de visión y espacio. Cada una de ellas se diferencia por la forma en que las ondas del emisor llegan al receptor, siguiendo la curvatura de la tierra (superficie), reflejo en la

troposfera (troposférica), reflejo en la ionosfera (ionosférica), viéndose una antena a otra (línea

de visión) o siendo retransmitidas por satélite (espacio). Cada banda es susceptible de uno u

otro tipo de propagación:

·       Repetidores: para aumentar la distancia útil de las microondas terrestres, el repetidor radia la señal regenerada a la frecuencia original o a una nueva frecuencia. Las microondas forman la base de los sistemas de telefonía.

·         Antenas: para la transmisión y recepción de las señales de radio se utilizan distintos tipos de antenas: dipolos, parabólicas, de cornete.

·         Comunicación vía satélite: utiliza microondas de emisión directa y repetidores por satélite.

·     Telefonía celular. Para conexiones entre dispositivos móviles. Divide cada área en zonas o células, que contienen una antena y una central controlada por una central de conmutacion. La telefonía celular usa modulación en frecuencia.

Microondas, en un sistema de microondas se usa el espacio aéreo como medio físico de transmisión. La información se transmite en forma digital a través de ondas de radio de muy corta longitud (unos pocos centímetros). Pueden direccionarse múltiples canales a múltiples estaciones dentro de un enlace dado, o pueden establecer enlaces punto a punto. Las estaciones consisten en una antena tipo plato y de circuitos que interconectan la antena con la terminal del usuario.

Los sistemas de microondas terrestres han abierto una puerta a los problemas de transmisión de datos, sin importar cuales sean, aunque sus aplicaciones no estén restringidas a este campo solamente. Las microondas están definidas como un tipo de onda electromagnética situada en el intervalo del milímetro al metro y cuya propagación puede efectuarse por el interior de tubos metálicos. Es en si una onda de corta longitud.

Tiene como características que su ancho de banda varia entre 300 a 3.000 Mhz, aunque con algunos canales de banda superior, entre 3´5 Ghz y 26 Ghz. Es usado como enlace entre una empresa y un centro que funcione como centro de conmutación del operador, o como un enlace entre redes Lan.

Para la comunicación de microondas terrestres se deben usar antenas parabólicas, las cuales deben estar alineadas o tener visión directa entre ellas, además entre mayor sea la altura mayor el alcance, sus problemas se dan perdidas de datos por atenuación e interferencias, es muy sensible a las malas condiciones atmosféricas.

Microondas terrestres: Suelen utilizarse antenas parabólicas. Para conexionas a larga distancia, se utilizan conexiones intermedias punto a punto entre antenas parabólicas.

Se suelen utilizar en sustitución del cable coaxial o las fibras ópticas ya que se necesitan menos repetidores y amplificadores, aunque se necesitan antenas alineadas. Se usan para transmisión de televisión y voz.

La principal causa de pérdidas es la atenuación debido a que las pérdidas aumentan con el cuadrado de la distancia (con cable coaxial y par trenzado son logarítmicas). La atenuación aumenta con las lluvias.

Las interferencias es otro inconveniente de las microondas ya que al proliferar estos sistemas, pude haber más solapamientos de señales.

Microondas por satélite: El satélite recibe las señales y las amplifica o retransmite en la dirección adecuada .Para mantener la alineación del satélite con los receptores y emisores de la tierra, el satélite debe ser geoestacionario.

Se suele utilizar este sistema para:

·         Difusión de televisión.

·         Transmisión telefónica a larga distancia.

·         Redes privadas.

El rango de frecuencias para la recepción del satélite debe ser diferente del rango al que este emite, para que no haya interferencias entre las señales que ascienden y las que descienden.

Debido a que la señal tarda un pequeño intervalo de tiempo desde que sale del emisor en la Tierra hasta que es devuelta al receptor o receptores, ha de tenerse cuidado con el control de errores y de flujo de la señal.

Las diferencias entre las ondas de radio y las microondas son:

·         Las microondas son unidireccionales y las ondas de radio omnidireccionales.

·         Las microondas son más sensibles a la atenuación producida por la lluvia.

·         En las ondas de radio, al poder reflejarse estas ondas en el mar u otros objetos, pueden aparecer múltiples señales "hermanas".

MEDIO DE TRANSMISIÓN SEGÚN SU SENTIDO

ü  Simplex

Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente. Con esta fórmula es difícil la corrección de errores causados por deficiencias de línea (por ejemplo, la señal de TV).

ü  Half-duplex

En este modo la transmisión fluye en los dos sentidos, pero no simultánemnete, solo una de las dos estaciones del enlace punto a punto puede transmitir. Este método también se denomina en dos sentidos alternos (p. ej., el walkie-talkie).

ü  Full-duplex

Es el método de comunicación más aconsejable puesto que en todo momento la comunicación puede ser en dos sentidos posibles, es decir, que las dos estaciones simultáneamente pueden enviar y recibir datos y así pueden corregir los errores de manera instantánea y permanente.

Qué es la topología de una red

La topología es el arreglo (físico o lógico) donde los dispositivos o nodos de una red (e.g. computadoras, servidores, concentradores, enrutadores, puntos de acceso, etc.) se interconectan sobre un medio de comunicación. La topología en una red determina la forma de comunicación entre sus nodos. Existen topologías donde la intercomunicación entre sus nodos es sencilla y otras donde es compleja. La mala elección de una topología puede ocasionar que la red no opere de manera eficiente. Una topología determina el número de nodos que se conectarán, el método de acceso múltiple, tiempo de respuesta, velocidad de la información, costo, tipo de aplicaciones, etcétera.

Una red puede tener una topología física o lógica. La topología física se refiere al diseño físico de la red incluyendo la instalación y localización de cables, dispositivos, trayectorias, etc. La topología lógica tiene que ver en cómo se transfiere la información a su paso por los nodos de la red. La topología lógica puede ser considerada como forma o estructura virtual de una red. Esta forma, en realidad, no corresponde con el diseño físico real de los dispositivos en la red. Un grupo de computadoras pueden estar conectadas en forma circular, pero eso no necesariamente significa que representa una topología de anillo.

Las topologías pueden ser de dos tipos:

          a) Topología física: Se refiere al diseño actual del medio de transmisión de la red.

          b) Topología lógica: Se refiere a la trayectoria lógica que una señal a su paso por los nodos de la red.

TOPOLOGÍA FÍSICAS

Las topologías físicas más comunes son: ducto, estrella, anillo, malla y las híbridas. Cada una de éstas tiene sus ventajas y desventajas, así como sus aplicaciones  específicas.

Topología de ducto (bus)

Una topología de ducto o bus está caracterizada por una dorsal principal con dispositivos de red interconectados a lo largo de la dorsal. Las redes de ductos son consideradas como topologías pasivas. Las computadoras "escuchan" al ducto. Cuando éstas están listas para transmitir, ellas se aseguran que no haya nadie más transmitiendo en el ducto, y entonces ellas envían sus paquetes de información. Las redes de ducto basadas en contención (ya que cada computadora debe contender por un tiempo de transmisión) típicamente emplean la arquitectura de red ETHERNET.

Las redes de bus comúnmente utilizaban cable coaxial como medio de comunicación, las computadoras se contaban al ducto mendiante un conector BNC en forma de T. En el extremo de la red se ponia un terminador (si se utilizaba un cable de 50 ohm, se ponia un terminador de 50 ohms también). Eran muy susceptibles a quebraduras de cable coaxial, conectores y cortos en el cable que son muy díficiles de encontrar. Un problema físico en la red, tal como un conector T, puede tumbar toda la red.

Con la entrada del cable par trenzado, la topología de ducto fue un poco más robusta, pero seguía existiendo la contensión para accesar al cabla dorsal. Ese problema de colisiones se redujo al segmentar las redes en pocos nodos. A pesar de esos problema la topología de ducto con Ethernet es la más utilizada para redes de área local (LAN).

En ambientes MAN (Metropolitan Area Network), las compañías de televisión por cable utilizan esta topología para extender sus redes.

Las redes LAN con topología de ducto son las más utilizadas a nivel mundial, por su facilidad de instalación y bajo costo. El desempeño de una red de este tipo depende del número de nodos conectados a ésta. Entre mayor sea el número de nodos, la red se vuelve más compleja y aumenta la probabilidad de colisiones, las cuales se generan cuando dos o más nodos quieren acceder al medio al mismo tiempo. La principal desventaja de esta topología es que si el ducto falla, toda la red se deshabilita.

En ambientes de redes metropolitanas (MAN), un ejemplo típico de red basada en ducto es el servicio de televisión por cable coaxial. En una red de televisión por cable se tira uno o varios ductos principales por cada una de las avenidas en una ciudad y los suscriptores se conectan a un distribuidor para acceder al servicio.

Topología de estrella (star)

En una topología de estrella, las computadoras en la red se conectan a un dispositivo central conocido como concentrador (hub en inglés) o a un conmutador de paquetes (swicth en inglés).

Topologia de estrella

En un ambiente LAN cada computadora se conecta con su propio cable (típicamente par trenzado) a un puerto del hub o switch. Este tipo de red sigue siendo pasiva, utilizando un método basado en contensión, las computadoras escuchan el cable y contienden por un tiempo de transmisión.

Debido a que la topología estrella utiliza un cable de conexión para cada computadora, es muy fácil de expandir, sólo dependerá del número de puertos disponibles en el hub o switch (aunque se pueden conectar hubs o switchs en cadena para así incrementar el número de puertos). La desventaja de esta topología en la centralización de la comunicación, ya que si el hub falla, toda la red se cae.

Hay que aclarar que aunque la topología física de una red Ethernet basada en hub es estrella, la topología lógica sigue siendo basada en ducto.

Debido a que las redes LAN corporativas tienen un gran número de nodos, surge la necesidad de dividirla en segmentos más pequeños. Para ello, se usan hubs/switchs conectados en cascada, estableciéndose una variante conocida como topología estrella extendida.

La topología estrella extendida en un ambiente LAN es fácil de configurar, de costo accesible, y tiene más redundancia que la topología de ducto. En vez de conectar todos los dispositivos a un nodo central, los nodos se conectarán a otros dispositivos subcentrales, permitiendo más funcionalidad para establecer subredes y creando también más puntos de falla. Mientras la topología de estrella fue hecha para redes pequeñas, la topología estrella extendida se adapta mejor a redes grandes.

Topologia de estrella extendida

Topología estrella extendida, en un ambiente MAN, es la telefonía celular. El nodo central es el conmutador que se encarga de establecer la comunicación entre las terminales móviles. Al conmutador central se conectan vía enlace de microondas, las radiobases o antenas de telefonía celular. A su vez, las radiobases se conectan vía frecuencias de telefonía celular a las terminales móviles.

Topología de anillo (ring)

Una topología de anillo conecta los dispositivos de red uno tras otro sobre el cable en un círculo físico. La topología de anillo mueve información sobre el cable en una dirección y es considerada como una topología activa. Las computadoras en la red retransmiten los paquetes que reciben y los envían a la siguiente computadora en la red. El acceso al medio de la red es otorgado a una computadora en particular en la red por un "token". El token circula alrededor del anillo y cuando una computadora desea enviar datos, espera al token y posiciona de él. La computadora entonces envía los datos sobre el cable. La computadora destino envía un mensaje (a la computadora que envió los datos) que de fueron recibidos correctamente. La computadora que transmitio los datos, crea un nuevo token y los envía a la siguiente computadora, empezando el ritual de paso de token o estafeta (token passing) nuevamente.

Topología de malla (mesh)

La topología de malla (mesh) utiliza conexiones redundantes entre los dispositivos de la red aí como una estrategía de tolerancia a fallas. Cada dispositivo en la red está conectado a todos los demás (todos conectados con todos). Este tipo de tecnología requiere mucho cable (cuando se utiliza el cable como medio, pero puede ser inalámbrico también). Pero debido a la redundancia, la red puede seguir operando si una conexión se rompe.

Las redes de malla, obviamente, son mas difíciles y caras para instalar que las otras topologías de red debido al gran número de conexiones requeridas.

La red Internet utiliza esta topología para interconectar las diferentes compañías telefónicas y de proveedoras de Internet, mediante enlaces de fibra óptica.

Existen mallas conectadas completamente y otras, conectadas parcialmente. Las mallas completas son aquellas donde todos sus nodos tienen una conexión con el resto de los nodos más próximos. En una malla parcial, no necesariamente todos los nodos deberán de estar conectados con todos.

En el caso de ambientes LAN, CAN, MAN es poco práctico poner en marcha este tipo de redes, pero en ambientes WAN las redes de malla son utilizadas por las compañías telefónicas. Las centrales telefónicas de cada ciudad están conectadas en malla con las poblaciones vecinas, de esta manera se puede llegar a cualquier parte del mundo. El servicio de Internet y otros de telecomunicaciones proveídos por las compañías telefónicas son transportados por esta red de malla, que se forma con la unión de todas las compañías proveedoras de servicios de telecomunicaciones del orbe, utilizando como dorsal la fibra óptica.

Topologías híbridas

Las topologías híbridas son la combinación de dos o más topologías en una misma red. La topología de árbol y la jerárquica son ejemplos de topologías híbridas, aunque, pueden darse más combinaciones de acuerdo con las necesidades específicas de la organización.

TOPOLOGÍAS LÓGICAS

Las topologías lógicas definen cómo los dispositivos de red se comunicarán a través de las topologías físicas, es decir cómo los dispositivos simultáneamente accederán al medio de comunicación de una manera ordenada. Existen dos tipos de topologías lógicas a nivel de LAN.

    ► Topología con medio compartido

    ► Topología basada en token

Medio compartido

En este tipo de topología lógica todos los dispositivos tienen la habilidad de acceder al medio de comunicación compartido en cualquier momento. Este hecho se convierte en ventaja y desventaja, a la vez. La principal desventaja es que como el medio de comunicación es compartido se pueden ocasionar colisiones, donde dos o más nodos de la red transmitan al mismo tiempo, dando como resultado que se pierdan los paquetes y deban renviarse hasta que no existan más colisiones. Ethernet es el ejemplo más característico y utiliza como protocolo de acceso al medio el CSMA/CD (Carrier Sense Multiple Access/Collision Detection).

Para redes pequeñas, la topología lógica de medio compartido funciona bien pero cuando se incrementa el número de nodos aumenta la probabilidad de colisiones. Para evitar esto se recomienda segmentar las redes con un número pequeño de nodos, haciendo uso de hubs o switchs, reduciendo el dominio de colisiones. Las redes con medios compartidos son típicamente implementadas en topologías físicas, como bus, estrella o híbridas.

Basadas en token

Las topologías lógicas basadas en token funcionan utilizando un testigo o estafeta (token) para proveer acceso al medio físico, el cual recorre la red en un orden lógico. Para que un nodo pueda transmitir o recibir información necesita forzosamente tener el token en su poder en ese momento. A diferencia del medio compartido, vimos que en este esquema todos los nodos pueden transmitir en cualquier momento. En una red basada en token, no ocurre eso, se necesita el token para realizar la acción. La principal desventaja de este método es el retardo, es decir, el tiempo que recorre el token en dar la vuelta para que determinado nodo pueda transmitir. La ventaja respecto al esquema anterior, es la ausencia de colisiones. Las redes basadas en token se adaptan más para topologías físicas en anillo.